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This paper discusses wetting and capillary condensation transitions on a line and a rectangular
array of cylinders using an interface potential formalism. For a line of cylinders, there is a capillary
condensation transition followed by complete wetting if the cylinders are sufficiently close together.
Both transitions disappear as the cylinder separation is increased. The dependence of the wetting
phase diagram of a rectangular array of cylinders is discussed as a function of the chemical potential,
substrate-fluid interaction strength, and surface tension.

PACS number(s): 68.45.Gd, 47.55.Mh

I. INTRODUCTION

The wetting of planar surfaces is now well understood
[1-3]. However, in many realistic situations, substrates
are far from planar. A particularly important example
is provided by porous media, whose wetting properties
have implications for fluid flow [4], oil recovery [5], and
also the probing of the fractal geometry of surfaces [6].
Our aim in this paper is to describe wetting and capillary
condensation on lines and arrays of cylinders as a step
towards understanding the properties of binary fluids in
complicated geometries.

For such complicated geometries rigorous theoretical
methods quickly become intractable and approximations
must be made. A profitable approach has been to use
an interface potential which replaces the density profile
at a fluid-fluid interface by a sharp kink and uses a local
surface tension [1,3]. This approach is valid far from the
bulk critical point and for wetting layers thicker than a
few intermolecular spacings. It has the advantage that it
is easily implemented yet provides qualitatively correct
phase diagrams.

Cheng and Cole [7] and Napidrkowski, Koch, and
Dietrich [8] applied the interface potential approach
to wetting in a corner, Darbellay and Yeomans
[9] to wetting in a slit, and Robbins, Andelman, and
Joanny [10] to wetting on a line of slits. Dobbs, Dar-
bellay, and Yeomans [11] extended the approach to treat
two spheres and subsequently a square array of cylinders
[12] in both the grand canonical and the more physi-
cally realistic canonical ensembles. In each case, sensible
qualitative results were obtained for the phase behavior,
although, as one might expect, subtle details of the in-
terface position are not given correctly [3].

In Sec. II we use such an interface potential approach
to study wetting on a line of cylinders. We consider
the case of van der Waals interparticle interactions. If
the cylinders are close enough together for a capillary
condensation transition to occur, the system undergoes
complete wetting as liquid-gas coexistence is approached.
Otherwise, the cylinders behave individually rather than
collectively and the wetting transition is suppressed.
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In Sec. III a rectangular array of cylinders is consid-
ered. The phase diagram is determined as a function
of the aspect ratio of the array, the chemical potential,
the strength of the van der Waals interactions, and the
surface tension. Limiting cases in which this substrate
reverts to the line of cylinders described in Sec. II and
the square array considered by Dobbs and Yeomans [12]
are discussed.

These problems have been addressed in the past using
an approximation in which all interfaces are assumed to
be circular with curvature proportional to the chemical
potential [13,14]. This is exactly the limit of zero van
der Waals interaction. In Sec. IV we relate our results
to this work by discussing the changes in the phase dia-
grams which result first from including a wetting layer of
nonzero thickness and second from relaxing the condition
of nonconstant interface curvature.

Our results are summarized in Sec. V.

II. AN INFINITE LINE OF CYLINDERS

First we consider wetting on an infinite line of identical
cylinders lying along the = axis with their axes parallel
to the z axis, as shown in Fig. 1. The cylinders have
radius 79 and their separation is L’. The relevant part of
the grand potential per cylinder, per unit length in the z
direction, is taken to be

3= 4</+L’/2{am+ Ap (l(a:) - 7;2(23) }d:c

0

+W[l(m)]) , (1)

where [(z) is the interface position and the subscript =
denotes differentiation with respect to z.

The first term in Eq. (1) is the free energy of the liquid-
gas interface, the surface tension o multiplied by the sur-
face area. The second is a bulk term due to the excess
cost of the adsorbed, unfavorable liquid. If p; and pg are
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the liquid and gas number densities, respectively, then
the free energy per unit volume of the liquid phase over
and above that of the gas phase is

Z&\/TI'Z (.uc_lJ'*)(pl _pg)a (2)

with p* the chemical potential of the fluid in the system
and p. the chemical potential at bulk liquid-gas coexis-
tence.

The final term models the interparticle interactions
which, for nonretarded van der Waals forces, can be writ-
ten

+L'/2 oo
Wl(z)] = A [(m) (', y(z'), 7m0, L' )dy dz' (3)

with a disjoining pressure

dr' , (4)

1
H(:B, Y, TOaLI) = Z/ WO

B ylinder 2 II‘ - I'I|6
where the summation is taken over all cylinders 7. Note
that the integrals in Egs. (3) and (4) are over the gas and
the substrate; all other interactions are either indepen-
dent of /() or can be reformulated as integrals over these
regions. The strength of the interactions is W = A/n2,
where A is the conventionally defined Hamaker constant.
The integral in Eq. (4) cannot be performed analyt-
ically, in contrast to the cases of a spherical substrate
[15] and a cylindrical pore [16], but the numerical result
is well fit by a function
2.2
+ 3 7'0) . (5)

o ,n-e—(li/T‘u—l)
6(l; — o) 812

(z,y,ro, L') W5 >

i=—00

where [; is the distance from the centre of cylinder i to
the point r. The first term in expression (5) is accurate at
small distances from a cylinder, when the substrate acts
like a flat plane. The second gives the correct behavior
in the long distance limit. The fit (5) agrees with numer-
ical integration of the disjoining pressure to within 10%,
with the largest discrepancy occurring in the crossover
region, at a distance of about 7o from the surface of a
cylinder. This discrepancy is unimportant because the
contribution of the interactions to the total free energy
is small compared to that of the surface energy at this
distance.

The grand free energy ® can be minimized with re-
spect to [(z) using the Euler-Lagrange formula, yielding

FIG. 1. Arrangement of fluid
around a line of cylinders for a
bridged phase.

y
z X
a nonlinear differential equation

d ol, . N
de (W) — Ap+T(z,l(z),r0,L') = 0. (6)

A solution where the liquid forms bridges between the
cylinders (see Fig. 1) may be found if this is solved with
boundary conditions I, =0 at « =0 and x = L'/2.

To find the unbridged solution, where the interface
wraps around each individual cylinder, it is necessary to
formulate problem in polar coordinates with the origin at
the centre of a cylinder. The Euler-Lagrange minimiza-
tion then gives

d 0‘l9

— — Apl(6)
a0\ Juz +12)

ol(0)

V(2 +13)

The boundary conditions are lp = 0 at # = 0 and 7/2,
where lg = dl(6)/d6.

The solutions to the differential equations (6) and (7)
can be found numerically using a relaxation method for
different values of the dimensionless parameters p =
Apre/o, L = L'[ro, and Wy = W/ /(or2). Once the in-
terface profiles are known, the grand free energy of each
phase can be calculated from Eq. (1) using numerical
integration techniques, allowing comparison of the free
energies and determination of the stable configuration.

The resulting phase diagram is shown in Fig. 2. For
L < 2 the cylinders are overlapping and the problem
is not defined. The unbridged phase is stable at large
1, as expected. For 2 < L < L.(W)), as u is decreased,
there is a first-order phase transition to the bridged phase
and then, as yu — 0, the interface unbinds to infinity, an
example of a complete wetting transition. As the surface
unbinds to large distances, it becomes flat and it follows
from (5) and (6) that

+H(0a l(@),ro, L/)l(e) - = 0. (7)

— 7.‘.2,,_2WI

This shows that the line of cylinders is behaving, as ex-
pected, like a plate of effective thickness mr3/L’.
For L > L., capillary condensation does not occur as
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FIG. 2. Dependence of the
bridging transition of a single
line of cylinders on the reduced
van der Waals interaction Wpy:

solid line, Wy, = 0; long-
dashed line, Wy = 2.5 x 1078;
short-dashed line, Wo
=2.5x10""

u decreases and the complete wetting transition is sup-
pressed by the substrate geometry. For vanishingly small
Wy at p = 0, the surface area is the only relevant quan-
tity. The liquid-gas surface area per unit length for a
single cylinder in the unbridged phase is 27wro, while that
of a bridged film is 2L.rq, giving L.(0)=m in agreement
with the numerical solution.

As Wy is increased at fixed p, the interfaces lie further
from the substrates. For an approximately flat, bridged
interface the surface energy is virtually unchanged by
this. However, for the unbridged solution the surface
area and hence the surface energy must increase as the
interface moves. Thus the unbridged solution becomes
less favorable for a given u, as seen in Fig. 2.

III. AN INFINITE RECTANGULAR ARRAY
OF CYLINDERS

An infinite number of lines of cylinders can be brought
together to produce a rectangular array with interline

distance D’, as shown in Fig. 3. As D = D'/rg is reduced,
this system shows a crossover from the behavior of a line
of cylinders to that reported in Dobbs and Yeomans [12]
for a square array.

Two new phases might be expected to exist. The first
of these consists of bridging between lines of cylinders as
well as between the cylinders in one line. To find such
a doubly bridged solution it is necessary to use a polar
coordinate system centered on an interstitial site such as
point A in Fig. 3. The Euler-Lagrange minimization then
gives

d 0'l9

®\ e+

_IO, 10", ro, LY(O) — —2O_ o (9)

VJI2+12

+ Apl(6)

FIG. 3. Part of a rectangular
array of cylinders, showing the
doubly bridged phase.
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2.6

25
bridged in x direction

24

FIG. 4. Phase diagram of an
array of cylinders with L = 2.2
for three values of Wy: solid
line, Wy = 0; long-dashed line,
Wo = 2.5 x 107%; short-dashed
line, Wy = 2.5 x 10~%. The re-
sults are derived from solutions
to Egs. (6) and (7). For Wy =0
the simple model described in
Sec. IV gives identical results.

unbridged

i bridged iny direction

where !’ and ¢’ are the distance and angle to point (I, 0)
from the center of one of the four nearest cylinders. The
boundary conditions are l[p = 0 at # = 0 and 6 = n/2.
Equation (9) is solved numerically, as before.

There is also a phase where the space between the
cylinders is completely filled with liquid. The free energy
of this per cylinder, per unit length in the z direction is

®ean = Ap(L'D’ — wrl). (10)

From comparisons of the free energies, the stable config-
uration can be found for given values of the four param-

eters L, D, p = Aprg/o, and Wy = W} /ord.

Phase diagrams are plotted in Figs. 4 and 5 and are
discussed below.

(i) Small L. Figure 4 shows a cross section through the
phase diagram for L = 2.2 and Wy = 2.5 x 1076, For any
finite D, the behavior is no longer that of many separate
horizontal lines of cylinders. Complete wetting at u = 0
is replaced by a transition to a full phase at u > 0. For
large D, this transition lies along the line D = 2/u. As D
decreases, the phase which is singly bridged along the %
direction becomes unstable, as expected, and the doubly
bridged solution is favored. For D = L = 2.2, symmetry

45

unbridged

3.5 |

25

FIG. 5. Phase diagram of an
array of cylinders with L = 2.6
. for three values of Wy: solid
line, Wy = 0; long-dashed line,
Wo = 2.5 x 107%; short-dashed
7 line, Wy = 2.5 x 1074,

bridged in y direction
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demands that singly bridged solutions cannot be stable
and the theory reduces to that of Dobbs and Yeomans
for a square array [12]. For D < L, as p is decreased,
the system jumps from being unbridged to singly bridged
along ¥ to doubly bridged to full, the order of increasing
liquid volume.

As W is increased the transitions occur at larger val-
ues of both D and p. The dominant effect is for the
increased disjoining pressure to push the interface away
from the cylindrical substrate, so increasing its length
and surface energy. Thus, those phases with more inter-
face near a cylinder become relatively less favored, allow-
ing the full region to grow at the expense of the bridged
and the bridged at the expense of the unbridged phase.

As de Gennes [17] has pointed out, | = /W(/o is a
length that sets the scale for competition between surface
tension and van der Waals effects. For the parameters
used here, I/rg ~ 10721072 is small compared to unity.
Therefore we do not expect the van der Waals term to
have a strong qualitative effect on the shape of the phase
diagram. However, rather large quantitative changes are
seen.

(i) Increasing L. For L = 2.6 and W, = 2.5x107¢, the
phase diagram is that shown in Fig. 5. As L is increased,
the quadruple point B in Fig. 4 moves to lower values of u
until it coincides with point A, when the doubly bridged
phase disappears from the phase diagram. Moreover, the
phase which is singly bridged along % is stable only at
increasingly high values of D as L is increased further
until L = L}, when it becomes thermodynamically un-
stable for all D. L is, as expected, approximately equal
to L., the critical value above which a line of cylinders

@)

B e e hkl ot

X

(iii.)
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does not undergo complete wetting, with small correc-
tions due to the influence of the other cylinders in the
array.

IV. A SIMPLE MODEL

The interface potential approach already involves con-
siderable approximation. However, it still relies on the
high symmetry of the system considered to produce
tractable, one-dimensional, nonlinear differential equa-
tions. To better model porous media it would be de-
sirable to be able to treat more complicated substrate
geometries. Thus we now consider a much simpler way
of modeling the phases in the cylindrical array and com-
pare the resulting phase diagrams with those obtained
from the interface potential approach. We find only
small discrepancies for physically realistic Wy, giving con-
fidence that the simpler model will give qualitatively cor-
rect phase diagrams for more realistic models of porous
media.

The approach is to approximate the interface shapes in
the different thermodynamically stable phases by simple
curves that can be handled analytically. The effect of the
van der Waals interaction is incorporated by assuming
that where an interface wraps around a cylinder it lies a
distance r from the center of the cylinder, where r follows
from the flat plane result

1/3
Wi
T—To = — .
6A L

(11)

FIG. 6. Approximate ge-
ometries used to model the
(i) interface position in the ap-
proach described in Sec. IV: (i)
unbridged phase, (ii) bridged
phase, (iii) doubly bridged
phase. a =ro/p.
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Where the liquid forms bridges between cylinders, the
bridges are taken to have a radius of curvature a =
o/Ap = ro/p, which follows from minimizing the free
energy of a bridge with respect to a. By assuming that
the arcs of radius r and a meet tangentially, the interface
shape is completely defined.

The different phases can be modeled as shown in Fig. 6.

(i) The unbridged phase consists of a circle of radius
r, centered on a cylinder.

(ii) The singly bridged phase consists of an arc of radius
r, centered on a cylinder, for § > 6y, with 8 measured
from the direction of bridging, and an arc of radius a
tangential to this at 6 = 6y, with 8l/0xz = 0 at z = L'/2,
where cosfy = L' /2(r + a).

(iii) The doubly bridged phase consists of an arc of
radius 7, centered on a cylinder, for 8y < 6 < 6,, and
two arcs of radius a tangential to this, the first at § = 6,
with 9l/0z = 0 at ¢ = L' /2, where cosby = L' /2(r + a),
and the second at 8 = 0, with 8l/8y = 0 at y = D'/2,
where cosfy, = D'/2(r + a).

The grand free energy is taken to be

® = o x (interface area) + Ay x (fluid volume). (12)

For r = 7y, corresponding to Wy = 0, this approach is
exact and was first described for an array of cylinders by
Princen [13]. The results correspond to the solid curves in
Figs. 4 and 5. If the simple model described by Egs. (11)
and (12) and depicted in Fig. 6 is used, agreement with
the free energies calculated using the interface potential
approach is found to within 0.5% and 2% for Wy = 2.5 x
107% and 2.5 x 107%, respectively. This leads to phase
boundaries which are typically shifted =~ 75% of the way
from the Wy = 0 results towards those obtained by the
interface potential approach.

V. DISCUSSION

In this paper we have described wetting on a line and
rectangular array of cylinders. For a line of cylinders a
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capillary condensation or bridging transition is followed
by complete wetting as p — 0. If the cylinders are suf-
ficiently far apart, bridging does not occur and the wet-
ting transition is suppressed: the cylinders are now be-
having individually rather than as an effectively planar
substrate.

For an array of cylinders we have calculated the phase
diagram as a function of the aspect ratio and reduced
chemical potential. Several different capillary conden-
sation transitions occur: to states bridged in the X or
¥y directions, to a doubly bridged phase, or to a phase
where the liquid completely fills the volume between the
cylinders.

The thin-thick transitions which correspond to wetting
on a cylindrical substrate [15,18] are not included in this
model where we consider an effective interface potential
with a single minimum. The results of Dobbs and Yeo-
mans [19] for adjacent spheres indicate that including
retarded van der Waals terms in the potential to model
such transitions would not substantially affect capillary
condensation, while the thin-thick transition lines would
essentially follow those for an individual cylinder.

The phase diagrams have also been obtained using an
interfacial potential approximation which treats the in-
terface as a sharp delineation between the two phases.
The interface position is obtained as the solution of a
nonlinear differential equation. This has allowed us to
test a simpler approach where the shape of the interface
in each phase is fed in as an assumption. The results
agree very well with those obtained by the interface po-
tential method, but only when a wetting layer around
each cylinder is included in the model.
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